Purpose: Diffuse remodeling of myocardial extra-cellular matrix is largely responsible for left ventricle (LV) dysfunction and arrhythmias. Our hypothesis is that the texture analysis of late iodine enhancement (LIE) cardiac computed tomography (cCT) images may improve characterization of the diffuse extra-cellular matrix changes. Our aim was to extract volumetric extracellular volume (ECV) and LIE texture features of non-scarred (remote) myocardium from cCT of patients with recurrent ventricular tachycardia (rVT), and to compare these radiomic features with LV-function, LV-remodeling, and underlying cardiac disease. Procedures: Forty-eight patients suffering from rVT were prospectively enrolled: 5/48 with idiopathic VT (IVT), 23/48 with post-ischemic dilated cardiomyopathy (ICM), 9/48 with idiopathic dilated cardiomyopathy (IDCM), and 11/48 with scars from a previous healed myocarditis (MYO). All patients underwent echocardiography to assess LV systolic and diastolic function and cCT with pre-contrast, angiographic, and LIE scan to obtain end-diastolic volume (EDV), ECV, and first-order texture parameters of Hounsfield Unit (HU) of remote myocardium in LIE [energy, entropy, HU-mean, HU-median, standard deviation (SD), and mean absolute deviation (MAD)]. Results: Energy, HU mean, and HU median by cCT texture analysis correlated with ECV (rho = 0.5650, rho = 0.5741, rho = 0.5068; p < 0.0005). cCT-derived ECV, HU-mean, HU-median, SD, and MAD correlated directly to EDV by cCT and inversely to ejection fraction by echocardiography (p < 0.05). SD and MAD correlated with diastolic function by echocardiography (rho = 0.3837, p = 0.0071; rho = 0.3330, p = 0.0208). MYO and IVT patients were characterized by significantly lower values of SD and MAD when compared with ICM and IDCM patients, independently of LV-volume systolic and diastolic function. Conclusions: Texture analysis of LIE may expand cCT capability of myocardial characterization. Myocardial heterogeneity (SD and MAD) was associated with LV dilatation, systolic and diastolic function, and is able to potentially identify the different patterns of structural remodeling characterizing patients with rVT of different etiology.
Assessment of Remote Myocardium Heterogeneity in Patients with Ventricular Tachycardia Using Texture Analysis of Late Iodine Enhancement (LIE) Cardiac Computed Tomography (cCT) Images / Esposito, Antonio; Palmisano, Anna; Antunes, Sofia; Colantoni, Caterina; Rancoita, Paola Maria Vittoria; Vignale, Davide; Baratto, Francesca; Della Bella, Paolo; Del Maschio, Alessandro; De Cobelli, Francesco. - In: MOLECULAR IMAGING AND BIOLOGY. - ISSN 1536-1632. - 20:5(2018), pp. 816-825. [10.1007/s11307-018-1175-1]
Assessment of Remote Myocardium Heterogeneity in Patients with Ventricular Tachycardia Using Texture Analysis of Late Iodine Enhancement (LIE) Cardiac Computed Tomography (cCT) Images
Esposito, Antonio
;Palmisano, Anna;Rancoita, Paola Maria Vittoria;Del Maschio, Alessandro;De Cobelli, Francesco
2018-01-01
Abstract
Purpose: Diffuse remodeling of myocardial extra-cellular matrix is largely responsible for left ventricle (LV) dysfunction and arrhythmias. Our hypothesis is that the texture analysis of late iodine enhancement (LIE) cardiac computed tomography (cCT) images may improve characterization of the diffuse extra-cellular matrix changes. Our aim was to extract volumetric extracellular volume (ECV) and LIE texture features of non-scarred (remote) myocardium from cCT of patients with recurrent ventricular tachycardia (rVT), and to compare these radiomic features with LV-function, LV-remodeling, and underlying cardiac disease. Procedures: Forty-eight patients suffering from rVT were prospectively enrolled: 5/48 with idiopathic VT (IVT), 23/48 with post-ischemic dilated cardiomyopathy (ICM), 9/48 with idiopathic dilated cardiomyopathy (IDCM), and 11/48 with scars from a previous healed myocarditis (MYO). All patients underwent echocardiography to assess LV systolic and diastolic function and cCT with pre-contrast, angiographic, and LIE scan to obtain end-diastolic volume (EDV), ECV, and first-order texture parameters of Hounsfield Unit (HU) of remote myocardium in LIE [energy, entropy, HU-mean, HU-median, standard deviation (SD), and mean absolute deviation (MAD)]. Results: Energy, HU mean, and HU median by cCT texture analysis correlated with ECV (rho = 0.5650, rho = 0.5741, rho = 0.5068; p < 0.0005). cCT-derived ECV, HU-mean, HU-median, SD, and MAD correlated directly to EDV by cCT and inversely to ejection fraction by echocardiography (p < 0.05). SD and MAD correlated with diastolic function by echocardiography (rho = 0.3837, p = 0.0071; rho = 0.3330, p = 0.0208). MYO and IVT patients were characterized by significantly lower values of SD and MAD when compared with ICM and IDCM patients, independently of LV-volume systolic and diastolic function. Conclusions: Texture analysis of LIE may expand cCT capability of myocardial characterization. Myocardial heterogeneity (SD and MAD) was associated with LV dilatation, systolic and diastolic function, and is able to potentially identify the different patterns of structural remodeling characterizing patients with rVT of different etiology.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.