Purpose: The role for [18F]FDG-PET in supporting amyotrophic lateral sclerosis (ALS) diagnosis is not fully established. In this study, we aim at evaluating [18F]FDG-PET hypo- and hyper-metabolism patterns in spinal- and bulbar-onset ALS cases, at the single-subject level, testing the diagnostic value in discriminating the two conditions, and the correlations with core clinical symptoms severity. Methods: We included 95 probable-ALS patients with [18F]FDG-PET scan and clinical follow-up. [18F]FDG-PET images were analyzed with an optimized voxel-based-SPM method. The resulting single-subject SPM-t maps were used to: (a) assess brain regional hypo- and hyper-metabolism; (b) evaluate the accuracy of regional hypo- and hyper metabolism in discriminating spinal vs. bulbar-onset ALS; (c) perform correlation analysis with motor symptoms severity, as measured by ALS-FRS-R. Results: Primary motor cortex showed the most frequent hypo-metabolism in both spinal-onset (∼57%) and bulbar-onset (∼64%) ALS; hyper-metabolism was prevalent in the cerebellum in both spinal-onset (∼56.5%) and bulbar-onset (∼55.7%) ALS, and in the occipital cortex in bulbar-onset (∼62.5%) ALS. Regional hypo- and hyper-metabolism yielded a very low accuracy (AUC < 0.63) in discriminating spinal- vs. bulbar-onset ALS, as obtained from single-subject SPM-t-maps. Severity of motor symptoms correlated with hypo-metabolism in sensorimotor cortex in spinal-onset ALS, and with cerebellar hyper-metabolism in bulbar-onset ALS. Conclusions: The high variability in regional hypo- and hyper-metabolism patterns, likely reflecting the heterogeneous pathology and clinical phenotypes, limits the diagnostic potential of [18F]FDG-PET in discriminating spinal and bulbar onset patients.

Testing the diagnostic accuracy of [18F]FDG-PET in discriminating spinal- and bulbar-onset amyotrophic lateral sclerosis

Perani, Daniela
2019-01-01

Abstract

Purpose: The role for [18F]FDG-PET in supporting amyotrophic lateral sclerosis (ALS) diagnosis is not fully established. In this study, we aim at evaluating [18F]FDG-PET hypo- and hyper-metabolism patterns in spinal- and bulbar-onset ALS cases, at the single-subject level, testing the diagnostic value in discriminating the two conditions, and the correlations with core clinical symptoms severity. Methods: We included 95 probable-ALS patients with [18F]FDG-PET scan and clinical follow-up. [18F]FDG-PET images were analyzed with an optimized voxel-based-SPM method. The resulting single-subject SPM-t maps were used to: (a) assess brain regional hypo- and hyper-metabolism; (b) evaluate the accuracy of regional hypo- and hyper metabolism in discriminating spinal vs. bulbar-onset ALS; (c) perform correlation analysis with motor symptoms severity, as measured by ALS-FRS-R. Results: Primary motor cortex showed the most frequent hypo-metabolism in both spinal-onset (∼57%) and bulbar-onset (∼64%) ALS; hyper-metabolism was prevalent in the cerebellum in both spinal-onset (∼56.5%) and bulbar-onset (∼55.7%) ALS, and in the occipital cortex in bulbar-onset (∼62.5%) ALS. Regional hypo- and hyper-metabolism yielded a very low accuracy (AUC < 0.63) in discriminating spinal- vs. bulbar-onset ALS, as obtained from single-subject SPM-t-maps. Severity of motor symptoms correlated with hypo-metabolism in sensorimotor cortex in spinal-onset ALS, and with cerebellar hyper-metabolism in bulbar-onset ALS. Conclusions: The high variability in regional hypo- and hyper-metabolism patterns, likely reflecting the heterogeneous pathology and clinical phenotypes, limits the diagnostic potential of [18F]FDG-PET in discriminating spinal and bulbar onset patients.
2019
Amyotrophic lateral sclerosis; Biomarkers; Brain metabolism; Diagnosis; [18F]FDG-PET; Radiology, Nuclear Medicine and Imaging
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11768/85452
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 19
social impact