Curcumin (diferuloylmethane), a polyphenolic compound derived from the spice plant Curcuma longa, displays multiple actions on solid tumours including anti-angiogenic effects. Here we have studied in rodent and human pituitary tumour cells the influence of curcumin on the production of hypoxia inducible factor 1α (HIF1A) and vascular endothelial growth factor A (VEGFA), two key components involved in tumour neovascularisation through angiogenesis. Curcumin dose-dependently inhibited basal VEGFA secretion in corticotroph AtT20 mouse and lactosomatotroph GH3 rat pituitary tumour cells as well as in all human pituitary adenoma cell cultures (nZ32) studied. Under hypoxia-mimicking conditions (CoCl 2 treatment) in AtT20 and GH3 cells as well as in all human pituitary adenoma cell cultures (nZ8) studied, curcumin strongly suppressed the induction of mRNA synthesis and protein production of HIF1A, the regulated subunit of the hypoxia-induced transcription factor HIF1. Curcumin also blocked hypoxiainducedmRNAsynthesis and secretion ofVEGFAinGH3 cells and in all human pituitary adenoma cell cultures investigated (nZ18). Thus, curcumin may inhibit pituitary adenoma progression not only through previously demonstrated antiproliferative and pro-apoptotic actions but also by its suppressive effects on pituitary tumour neovascularisation. © 2012 Society for Endocrinology.

Curcumin suppresses HIF1A synthesis and VEGFA release in pituitary adenomas

Losa, M.;
2012-01-01

Abstract

Curcumin (diferuloylmethane), a polyphenolic compound derived from the spice plant Curcuma longa, displays multiple actions on solid tumours including anti-angiogenic effects. Here we have studied in rodent and human pituitary tumour cells the influence of curcumin on the production of hypoxia inducible factor 1α (HIF1A) and vascular endothelial growth factor A (VEGFA), two key components involved in tumour neovascularisation through angiogenesis. Curcumin dose-dependently inhibited basal VEGFA secretion in corticotroph AtT20 mouse and lactosomatotroph GH3 rat pituitary tumour cells as well as in all human pituitary adenoma cell cultures (nZ32) studied. Under hypoxia-mimicking conditions (CoCl 2 treatment) in AtT20 and GH3 cells as well as in all human pituitary adenoma cell cultures (nZ8) studied, curcumin strongly suppressed the induction of mRNA synthesis and protein production of HIF1A, the regulated subunit of the hypoxia-induced transcription factor HIF1. Curcumin also blocked hypoxiainducedmRNAsynthesis and secretion ofVEGFAinGH3 cells and in all human pituitary adenoma cell cultures investigated (nZ18). Thus, curcumin may inhibit pituitary adenoma progression not only through previously demonstrated antiproliferative and pro-apoptotic actions but also by its suppressive effects on pituitary tumour neovascularisation. © 2012 Society for Endocrinology.
2012
Adenoma; Animals; Antineoplastic Agents; Cell Hypoxia; Cell Line, Tumor; Corticotrophs; Curcumin; Humans; Hypoxia-Inducible Factor 1, alpha Subunit; Lactotrophs; Mice; Neovascularization, Pathologic; Pituitary Neoplasms; RNA, Messenger; Rats; Somatotrophs; Vascular Endothelial Growth Factor A; Endocrinology, Diabetes and Metabolism; Endocrinology
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11768/86869
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 52
  • ???jsp.display-item.citation.isi??? 44
social impact