In recent years, great interest has been devoted to the use of Induced Pluripotent Stem cells (iPS) for modeling of human genetic diseases, due to the possibility of reprogramming somatic cells of affected patients into pluripotent cells, enabling differentiation into several cell types, and allowing investigations into the molecular mechanisms of the disease. However, the protocol of iPS generation still suffers from technical limitations, showing low efficiency, being expensive and time consuming. Amniotic Fluid Stem cells (AFS) represent a potential alternative novel source of stem cells for modeling of human genetic diseases. In fact, by means of prenatal diagnosis, a number of fetuses affected by chromosomal or Mendelian diseases can be identified, and the amniotic fluid collected for genetic testing can be used, after diagnosis, for the isolation, culture and differentiation of AFS cells. This can provide a useful stem cell model for the investigation of the molecular basis of the diagnosed disease without the necessity of producing iPS, since AFS cells show some features of pluripotency and are able to differentiate in cells derived from all three germ layers "in vitro". In this article, we describe the potential benefits provided by using AFS cells in the modeling of human genetic diseases.

Amniotic fluid stem cells: A novel source for modeling of human genetic diseases / Antonucci, Ivana; Provenzano, Martina; Rodrigues, Melissa; Pantalone, Andrea; Salini, Vincenzo; Ballerini, Patrizia; Borlongan, Cesar V.; Stuppia, Liborio. - In: INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES. - ISSN 1661-6596. - 17:4(2016), p. 607. [10.3390/ijms17040607]

Amniotic fluid stem cells: A novel source for modeling of human genetic diseases

SALINI, VINCENZO;
2016-01-01

Abstract

In recent years, great interest has been devoted to the use of Induced Pluripotent Stem cells (iPS) for modeling of human genetic diseases, due to the possibility of reprogramming somatic cells of affected patients into pluripotent cells, enabling differentiation into several cell types, and allowing investigations into the molecular mechanisms of the disease. However, the protocol of iPS generation still suffers from technical limitations, showing low efficiency, being expensive and time consuming. Amniotic Fluid Stem cells (AFS) represent a potential alternative novel source of stem cells for modeling of human genetic diseases. In fact, by means of prenatal diagnosis, a number of fetuses affected by chromosomal or Mendelian diseases can be identified, and the amniotic fluid collected for genetic testing can be used, after diagnosis, for the isolation, culture and differentiation of AFS cells. This can provide a useful stem cell model for the investigation of the molecular basis of the diagnosed disease without the necessity of producing iPS, since AFS cells show some features of pluripotency and are able to differentiate in cells derived from all three germ layers "in vitro". In this article, we describe the potential benefits provided by using AFS cells in the modeling of human genetic diseases.
2016
Amniotic fluid stem cells; Drug testing; Modeling of genetic diseases; Pluripotency; Trans-generational epigenetic modifications; Catalysis; Molecular Biology; Computer Science Applications1707 Computer Vision and Pattern Recognition; Spectroscopy; Physical and Theoretical Chemistry; Organic Chemistry; Inorganic Chemistry
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11768/87090
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 15
social impact