Acid-sensing ion channels (ASICs) are proton-activated, sodium-permeable channels, highly expressed in both central and peripheral nervous systems. ASIC1a is the most abundant isoform in the central nervous system and is credited to be involved in several neurological disorders including stroke, multiple sclerosis, and epilepsy. Interestingly, the affinity of ASIC1a for two antagonists, diminazene and amiloride, has recently been proposed to be voltage sensitive. Based on this evidence, it is expected that the pharmacology of ASIC1cannot be properly characterized by single-cell voltage-clamp, an experimental condition in which membrane potential is maintained close to resting values. In particular, these measurements do not take into account the influence of the membrane potential depolarization induced by ASIC1a activation during acidosis or neuronal activity. We show here the voltage-dependence of some small molecules antagonists (diminazene, amiloride and a new patented drug from Merck), but not of Psalmotoxin 1, a peptide binding to regions other than the pore. We also demonstrate that the opening of ASIC1a induced by moderate acidosis determines a depolarization sufficient to change the affinity of small molecule antagonists. The characterization of this mechanism was performed on CHO-K1 expressing ASIC1a and further confirmed in hippocampal neurons in culture. Finally, perforated-patch experiments indicate that intracellular modulations do not play a role in the voltage-dependent binding of small molecules. Since ASIC1a activation promotes a membrane depolarization that may influence the binding of small molecules, we propose to adopt experimental methods that do not interfere with the membrane potential for the drug screening of ASIC1a modulators.

Membrane potential changes occurring upon acidification influence the binding of small-molecule inhibitors to ASIC1a / Mazzocchi, N.; Grohovaz, F.; Taverna, S.; Menegon, A.. - In: NEUROPHARMACOLOGY. - ISSN 0028-3908. - 148:(2019), pp. 366-376. [10.1016/j.neuropharm.2019.01.033]

Membrane potential changes occurring upon acidification influence the binding of small-molecule inhibitors to ASIC1a

Grohovaz F.;
2019-01-01

Abstract

Acid-sensing ion channels (ASICs) are proton-activated, sodium-permeable channels, highly expressed in both central and peripheral nervous systems. ASIC1a is the most abundant isoform in the central nervous system and is credited to be involved in several neurological disorders including stroke, multiple sclerosis, and epilepsy. Interestingly, the affinity of ASIC1a for two antagonists, diminazene and amiloride, has recently been proposed to be voltage sensitive. Based on this evidence, it is expected that the pharmacology of ASIC1cannot be properly characterized by single-cell voltage-clamp, an experimental condition in which membrane potential is maintained close to resting values. In particular, these measurements do not take into account the influence of the membrane potential depolarization induced by ASIC1a activation during acidosis or neuronal activity. We show here the voltage-dependence of some small molecules antagonists (diminazene, amiloride and a new patented drug from Merck), but not of Psalmotoxin 1, a peptide binding to regions other than the pore. We also demonstrate that the opening of ASIC1a induced by moderate acidosis determines a depolarization sufficient to change the affinity of small molecule antagonists. The characterization of this mechanism was performed on CHO-K1 expressing ASIC1a and further confirmed in hippocampal neurons in culture. Finally, perforated-patch experiments indicate that intracellular modulations do not play a role in the voltage-dependent binding of small molecules. Since ASIC1a activation promotes a membrane depolarization that may influence the binding of small molecules, we propose to adopt experimental methods that do not interfere with the membrane potential for the drug screening of ASIC1a modulators.
2019
ASIC1a; Current clamp; Electrophysiology; Hippocampal neurons; Perforated patch; Pharmacology
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11768/91425
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact