Membrane-linked sialidase Neu3 is a key enzyme for the extralysosomal catabolism of gangliosides. In this respect, it regulates pivotal cell surface events, including trans-membrane signaling, and plays an essential role in carcinogenesis. In this report, we demonstrated that acute lymphoblastic leukemia (ALL), lymphoblasts (primary cells from patients and cell lines) are characterized by a marked down-regulation of Neu3 in terms of both gene expression (-30 to 40%) and enzymatic activity toward ganglioside GD1a (-25.6 to 30.6%), when compared with cells from healthy controls. Induced overexpression of Neu3 in the ALL-cell line, MOLT-4, led to a significant increase of ceramide (+66%) and to a parallel decrease of lactosylceramide (-55%). These events strongly guided lymphoblasts to apoptosis, as we assessed by the decrease in Bcl2/Bax ratio, the accumulation of Neu3 transfected cells in the sub G0-G1 phase of the cell cycle, the enhanced annexin-V positivity, the higher cleavage of procaspase-3. Therefore, the reduced expression of Neu3 in ALL could help lymphoblasts to survive, maintaining the cellular content of ceramide below a critical level. Interestingly, we found that Neu3 activity varied in relation to disease progression, increasing in clinical remission after chemotherapy, and decreasing again in patients that relapsed. In addition, a negative correlation was observed between Neu3 expression and the percentage of the ALL marker 9-OAcGD3 positive cells. Consequently, Neu3 could represent a new potent biomarker in childhood ALL, to assess the efficacy of therapeutic protocols and to rapidly identify an eventual relapse.

Down regulation of membrane-bound Neu3 constitutes a new potential marker for childhood acute lymphoblastic leukemia and induces apoptosis suppression of neoplastic cells / Mandal, C.; Tringali, C. A.; Mondal, S.; Anastasia, L.; Chandra, S.; Venerando, B.; Mandal, C.. - In: INTERNATIONAL JOURNAL OF CANCER. - ISSN 0020-7136. - 126:2(2010), pp. 337-349. [10.1002/ijc.24733]

Down regulation of membrane-bound Neu3 constitutes a new potential marker for childhood acute lymphoblastic leukemia and induces apoptosis suppression of neoplastic cells

L. Anastasia;
2010-01-01

Abstract

Membrane-linked sialidase Neu3 is a key enzyme for the extralysosomal catabolism of gangliosides. In this respect, it regulates pivotal cell surface events, including trans-membrane signaling, and plays an essential role in carcinogenesis. In this report, we demonstrated that acute lymphoblastic leukemia (ALL), lymphoblasts (primary cells from patients and cell lines) are characterized by a marked down-regulation of Neu3 in terms of both gene expression (-30 to 40%) and enzymatic activity toward ganglioside GD1a (-25.6 to 30.6%), when compared with cells from healthy controls. Induced overexpression of Neu3 in the ALL-cell line, MOLT-4, led to a significant increase of ceramide (+66%) and to a parallel decrease of lactosylceramide (-55%). These events strongly guided lymphoblasts to apoptosis, as we assessed by the decrease in Bcl2/Bax ratio, the accumulation of Neu3 transfected cells in the sub G0-G1 phase of the cell cycle, the enhanced annexin-V positivity, the higher cleavage of procaspase-3. Therefore, the reduced expression of Neu3 in ALL could help lymphoblasts to survive, maintaining the cellular content of ceramide below a critical level. Interestingly, we found that Neu3 activity varied in relation to disease progression, increasing in clinical remission after chemotherapy, and decreasing again in patients that relapsed. In addition, a negative correlation was observed between Neu3 expression and the percentage of the ALL marker 9-OAcGD3 positive cells. Consequently, Neu3 could represent a new potent biomarker in childhood ALL, to assess the efficacy of therapeutic protocols and to rapidly identify an eventual relapse.
2010
acute lymphoblastic leukemia (ALL); sialidase Neu3; apoptosis; 9-O-acetylated GD3; gangliosides
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11768/93686
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 34
  • ???jsp.display-item.citation.isi??? 36
social impact