The current study investigates the role of temporal processing in the visual domain in participants with developmental dyslexia (DD), the most common neurodevelopmental disorder, which is characterized by severe and specific difficulties in learning to read despite normal intelligence and adequate education. Specifically, our aim was to test whether DD is associated with a general impairment of temporal sensory processing or a specific deficit in temporal integration (which ensures stability of object identity and location) or segregation (which ensures sensitivity to changes in visual input). Participants with DD performed a task that measured both temporal integration and segregation using an identical sequence of two displays separated by a varying interstimulus interval (ISI) under two different task instructions. Results showed that participants with DD performed worse in the segregation task, with a shallower slope of the psychometric curve of percentage correct as a function of the ISI between the two target displays. Moreover, we found also a relationship between temporal segregation performance and text, words, and pseudowords reading speeds at the individual level. In contrast, no significant association between reading (dis)ability and temporal integration emerged. The current findings provide evidence for a difference in the fine temporal resolution of visual processing in DD and, considering the growing evidence about a link between visual temporal segregation and neural oscillations at specific frequencies, they support the idea that DD is characterized by an altered oscillatory sampling within the visual system.

Investigating the role of temporal processing in developmental dyslexia: Evidence for a specific deficit in rapid visual segmentation

Ronconi L.
;
2020-01-01

Abstract

The current study investigates the role of temporal processing in the visual domain in participants with developmental dyslexia (DD), the most common neurodevelopmental disorder, which is characterized by severe and specific difficulties in learning to read despite normal intelligence and adequate education. Specifically, our aim was to test whether DD is associated with a general impairment of temporal sensory processing or a specific deficit in temporal integration (which ensures stability of object identity and location) or segregation (which ensures sensitivity to changes in visual input). Participants with DD performed a task that measured both temporal integration and segregation using an identical sequence of two displays separated by a varying interstimulus interval (ISI) under two different task instructions. Results showed that participants with DD performed worse in the segregation task, with a shallower slope of the psychometric curve of percentage correct as a function of the ISI between the two target displays. Moreover, we found also a relationship between temporal segregation performance and text, words, and pseudowords reading speeds at the individual level. In contrast, no significant association between reading (dis)ability and temporal integration emerged. The current findings provide evidence for a difference in the fine temporal resolution of visual processing in DD and, considering the growing evidence about a link between visual temporal segregation and neural oscillations at specific frequencies, they support the idea that DD is characterized by an altered oscillatory sampling within the visual system.
2020
Magnocellular-dorsal stream
Neural oscillations
Perception
Reading
Vision
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11768/100387
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 12
social impact