Background: Neuroaxonal degeneration is one of the hallmarks of clinical deterioration in progressive multiple sclerosis (PMS). Objective: To elucidate the association between neuroaxonal degeneration and both local cortical and connected white matter (WM) tract pathology in PMS. Methods: Post-mortem in situ 3T magnetic resonance imaging (MRI) and cortical tissue blocks were collected from 16 PMS donors and 10 controls. Cortical neuroaxonal, myelin, and microglia densities were quantified histopathologically. From diffusion tensor MRI, fractional anisotropy, axial diffusivity (AD), radial diffusivity (RD), and mean diffusivity (MD) were quantified in normal-appearing white matter (NAWM) and white matter lesions (WML) of WM tracts connected to dissected cortical regions. Between-group differences and within-group associations were investigated through linear mixed models. Results: The PMS donors displayed significant axonal loss in both demyelinated and normal-appearing (NA) cortices (p < 0.001 and p = 0.02) compared with controls. In PMS, cortical axonal density was associated with WML MD and AD (p = 0.003; p = 0.02, respectively), and NAWM MD and AD (p = 0.04; p = 0.049, respectively). NAWM AD and WML AD explained 12.6% and 22.6%, respectively, of axonal density variance in NA cortex. Additional axonal loss in demyelinated cortex was associated with cortical demyelination severity (p = 0.002), explaining 34.4% of axonal loss variance. Conclusion: Reduced integrity of connected WM tracts and cortical demyelination both contribute to cortical axonal loss in PMS.

Cortical axonal loss is associated with both gray matter demyelination and white matter tract pathology in progressive multiple sclerosis: Evidence from a combined MRI-histopathology study / Kiljan, S.; Preziosa, P.; Jonkman, L. E.; van de Berg, W. D. J.; Twisk, J.; Pouwels, P. J. W.; Schenk, G. J.; Rocca, M. A.; Filippi, M.; Geurts, J. J. G.; Steenwijk, M. D.. - In: MULTIPLE SCLEROSIS. - ISSN 1352-4585. - 27:(2021), pp. 380-390. [10.1177/1352458520918978]

Cortical axonal loss is associated with both gray matter demyelination and white matter tract pathology in progressive multiple sclerosis: Evidence from a combined MRI-histopathology study

Preziosa P.;Rocca M. A.;Filippi M.;
2021-01-01

Abstract

Background: Neuroaxonal degeneration is one of the hallmarks of clinical deterioration in progressive multiple sclerosis (PMS). Objective: To elucidate the association between neuroaxonal degeneration and both local cortical and connected white matter (WM) tract pathology in PMS. Methods: Post-mortem in situ 3T magnetic resonance imaging (MRI) and cortical tissue blocks were collected from 16 PMS donors and 10 controls. Cortical neuroaxonal, myelin, and microglia densities were quantified histopathologically. From diffusion tensor MRI, fractional anisotropy, axial diffusivity (AD), radial diffusivity (RD), and mean diffusivity (MD) were quantified in normal-appearing white matter (NAWM) and white matter lesions (WML) of WM tracts connected to dissected cortical regions. Between-group differences and within-group associations were investigated through linear mixed models. Results: The PMS donors displayed significant axonal loss in both demyelinated and normal-appearing (NA) cortices (p < 0.001 and p = 0.02) compared with controls. In PMS, cortical axonal density was associated with WML MD and AD (p = 0.003; p = 0.02, respectively), and NAWM MD and AD (p = 0.04; p = 0.049, respectively). NAWM AD and WML AD explained 12.6% and 22.6%, respectively, of axonal density variance in NA cortex. Additional axonal loss in demyelinated cortex was associated with cortical demyelination severity (p = 0.002), explaining 34.4% of axonal loss variance. Conclusion: Reduced integrity of connected WM tracts and cortical demyelination both contribute to cortical axonal loss in PMS.
2021
axonal loss
histopathology
magnetic resonance imaging
Multiple sclerosis
post mortem
progressive
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11768/101870
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 11
social impact