Bilingualism is a natural laboratory for studying whether the brain's structural connectome is influenced by different aspects of language experience. However, evidence on how distinct components of bilingual experience may contribute to structural brain adaptations is mixed. The lack of consistency, however, may depend, at least in part, on methodological choices in data acquisition and processing. Herein, we adopted the Network Neuroscience framework to investigate how individual differences in second language (L2) exposure, proficiency, and age of acquisition (AoA) - measured as continuous between-subject variables - relate to whole-brain structural organization. We observed that L2 exposure modulated the connectivity of two networks of regions subserving language comprehension and production. L2 proficiency was associated with enhanced connectivity within a rostro-caudal network, which supports language selection and word learning. Moreover, L2 AoA and exposure affected inter-hemispheric communication between control-related regions. These findings expand mechanistic knowledge about particular environmental factors associated with specific variation in brain structure.

Bilingualism is a natural laboratory for studying whether the brain's structural connectome is influenced by different aspects of language experience. However, evidence on how distinct components of bilingual experience may contribute to structural brain adaptations is mixed. The lack of consistency, however, may depend, at least in part, on methodological choices in data acquisition and processing. Herein, we adopted the Network Neuroscience framework to investigate how individual differences in second language (L2) exposure, proficiency, and age of acquisition (AoA) – measured as continuous between-subject variables – relate to whole-brain structural organization. We observed that L2 exposure modulated the connectivity of two networks of regions subserving language comprehension and production. L2 proficiency was associated with enhanced connectivity within a rostro-caudal network, which supports language selection and word learning. Moreover, L2 AoA and exposure affected inter-hemispheric communication between control-related regions. These findings expand mechanistic knowledge about particular environmental factors associated with specific variation in brain structure.

The bilingual structural connectome: Dual-language experiential factors modulate distinct cerebral networks / Fedeli, Davide; Del Maschio, Nicola; Sulpizio, Simone; Rothman, Jason; Abutalebi, Jubin. - In: BRAIN AND LANGUAGE. - ISSN 1090-2155. - 220:(2021), p. 104978. [Epub ahead of print] [10.1016/j.bandl.2021.104978]

The bilingual structural connectome: Dual-language experiential factors modulate distinct cerebral networks

Fedeli, Davide;Del Maschio, Nicola;Sulpizio, Simone;Abutalebi, Jubin
2021-01-01

Abstract

Bilingualism is a natural laboratory for studying whether the brain's structural connectome is influenced by different aspects of language experience. However, evidence on how distinct components of bilingual experience may contribute to structural brain adaptations is mixed. The lack of consistency, however, may depend, at least in part, on methodological choices in data acquisition and processing. Herein, we adopted the Network Neuroscience framework to investigate how individual differences in second language (L2) exposure, proficiency, and age of acquisition (AoA) – measured as continuous between-subject variables – relate to whole-brain structural organization. We observed that L2 exposure modulated the connectivity of two networks of regions subserving language comprehension and production. L2 proficiency was associated with enhanced connectivity within a rostro-caudal network, which supports language selection and word learning. Moreover, L2 AoA and exposure affected inter-hemispheric communication between control-related regions. These findings expand mechanistic knowledge about particular environmental factors associated with specific variation in brain structure.
2021
Bilingualism is a natural laboratory for studying whether the brain's structural connectome is influenced by different aspects of language experience. However, evidence on how distinct components of bilingual experience may contribute to structural brain adaptations is mixed. The lack of consistency, however, may depend, at least in part, on methodological choices in data acquisition and processing. Herein, we adopted the Network Neuroscience framework to investigate how individual differences in second language (L2) exposure, proficiency, and age of acquisition (AoA) - measured as continuous between-subject variables - relate to whole-brain structural organization. We observed that L2 exposure modulated the connectivity of two networks of regions subserving language comprehension and production. L2 proficiency was associated with enhanced connectivity within a rostro-caudal network, which supports language selection and word learning. Moreover, L2 AoA and exposure affected inter-hemispheric communication between control-related regions. These findings expand mechanistic knowledge about particular environmental factors associated with specific variation in brain structure.
Bilingualism
Connectome
DTI
Individual differences
Second Language
Structural Connectivity
Tractography
White Matter
Brain
Humans
Language
Language Development
Connectome
Multilingualism
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11768/132701
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 15
social impact