Objective To investigate monoaminergic network abnormalities in patients with multiple sclerosis (MS) according to their fatigue and depressive status through a positron emission tomography (PET)-based constrained independent component analysis (ICA) on resting state (RS) functional MRI (fMRI). Methods In this prospective study, 213 patients with MS (mean age=40.6 +/- 12.5 years; 94/119 men/women; 153 relapsing-remitting; 60 progressive) and 62 healthy controls (HCs, mean age=39.0 +/- 10.4 years; 30/32 men/women) underwent neurological, fatigue, depression and RS fMRI assessment. Patterns of dopamine, norepinephrine-related and serotonin-related RS functional connectivity (FC) were derived by ICA, constrained to PET atlases for dopamine, norepinephrine and serotonin transporters, obtained in HCs' brain. Results Compared with HCs, patients with MS showed abnormalities in all three explored monoaminergic networks, mostly with decreased RS FC within PET-guided monoaminergic networks in frontal regions and subcortical areas including the cerebellum and thalamus, and increased RS FC in temporo-parieto-occipital cortical areas, including bilateral precunei. MS-related fatigue was associated with decreased RS FC within the PET-guided dopamine network in the left thalamus and left cerebellum, and with increased RS FC within the PET-guided serotonin network in the left middle occipital gyrus. MS-related depression was associated with more distributed abnormalities involving the three explored monoaminergic networks, resulting in overall reduced RS FC in the frontal lobe, limbic areas and the precuneus. Conclusions Patients with MS present diffuse dysregulation in the monoaminergic networks. Specific alterations in these networks were associated with fatigue and depression, providing a pathological marker for these bothersome symptoms and putative targets for their treatment.

Monoaminergic network abnormalities: a marker for multiple sclerosis-related fatigue and depression

Preziosa, Paolo;Mistri, Damiano;Filippi, Massimo
Penultimo
;
Rocca, Maria A
Ultimo
2023-01-01

Abstract

Objective To investigate monoaminergic network abnormalities in patients with multiple sclerosis (MS) according to their fatigue and depressive status through a positron emission tomography (PET)-based constrained independent component analysis (ICA) on resting state (RS) functional MRI (fMRI). Methods In this prospective study, 213 patients with MS (mean age=40.6 +/- 12.5 years; 94/119 men/women; 153 relapsing-remitting; 60 progressive) and 62 healthy controls (HCs, mean age=39.0 +/- 10.4 years; 30/32 men/women) underwent neurological, fatigue, depression and RS fMRI assessment. Patterns of dopamine, norepinephrine-related and serotonin-related RS functional connectivity (FC) were derived by ICA, constrained to PET atlases for dopamine, norepinephrine and serotonin transporters, obtained in HCs' brain. Results Compared with HCs, patients with MS showed abnormalities in all three explored monoaminergic networks, mostly with decreased RS FC within PET-guided monoaminergic networks in frontal regions and subcortical areas including the cerebellum and thalamus, and increased RS FC in temporo-parieto-occipital cortical areas, including bilateral precunei. MS-related fatigue was associated with decreased RS FC within the PET-guided dopamine network in the left thalamus and left cerebellum, and with increased RS FC within the PET-guided serotonin network in the left middle occipital gyrus. MS-related depression was associated with more distributed abnormalities involving the three explored monoaminergic networks, resulting in overall reduced RS FC in the frontal lobe, limbic areas and the precuneus. Conclusions Patients with MS present diffuse dysregulation in the monoaminergic networks. Specific alterations in these networks were associated with fatigue and depression, providing a pathological marker for these bothersome symptoms and putative targets for their treatment.
DEPRESSION
MRI
MULTIPLE SCLEROSIS
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11768/135737
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact