Mutations in MTMR2, the myotubularin-related 2 gene, cause autosomal recessive Charcot-Marie-Tooth (CMT) type 4B1, a demyelinating neuropathy with myelin outfolding and azoospermia. MTMR2 encodes a ubiquitously expressed phosphatase whose preferred substrate is phosphatidylinositol (3,5)-biphosphate, a regulator of membrane homeostasis and vesicle transport. We generated Mtmr2-null mice, which develop progressive neuropathy characterized by myelin outfolding and recurrent loops, predominantly at paranodal myelin, and depletion of spermatids and spermatocytes from the seminiferous epithelium, which leads to azoospermia. Disruption of Mtmr2 in Schwann cells reproduces the myelin abnormalities. We also identified a novel physical interaction in Schwann cells, between Mtmr2 and discs large 1 (Dlg1)/synapse-associated protein 97, a scaffolding molecule that is enriched at the node/paranode region. Dlg1 homologues have been located in several types of cellular junctions and play roles in cell polarity and membrane addition. We propose that Schwann cell-autonomous loss of Mtmr2-Dlg1 interaction dysregulates membrane homeostasis in the paranodal region, thereby producing outfolding and recurrent loops of myelin.

Disruption of Mtmr2 produces CMT4B1-like neuropathy with myelin outfolding and impaired spermatogenesis

Bolino A
Primo
;
2004-01-01

Abstract

Mutations in MTMR2, the myotubularin-related 2 gene, cause autosomal recessive Charcot-Marie-Tooth (CMT) type 4B1, a demyelinating neuropathy with myelin outfolding and azoospermia. MTMR2 encodes a ubiquitously expressed phosphatase whose preferred substrate is phosphatidylinositol (3,5)-biphosphate, a regulator of membrane homeostasis and vesicle transport. We generated Mtmr2-null mice, which develop progressive neuropathy characterized by myelin outfolding and recurrent loops, predominantly at paranodal myelin, and depletion of spermatids and spermatocytes from the seminiferous epithelium, which leads to azoospermia. Disruption of Mtmr2 in Schwann cells reproduces the myelin abnormalities. We also identified a novel physical interaction in Schwann cells, between Mtmr2 and discs large 1 (Dlg1)/synapse-associated protein 97, a scaffolding molecule that is enriched at the node/paranode region. Dlg1 homologues have been located in several types of cellular junctions and play roles in cell polarity and membrane addition. We propose that Schwann cell-autonomous loss of Mtmr2-Dlg1 interaction dysregulates membrane homeostasis in the paranodal region, thereby producing outfolding and recurrent loops of myelin.
File in questo prodotto:
File Dimensione Formato  
jcb1674711.pdf

Open Access dal 23/05/2005

Tipologia: PDF editoriale (versione pubblicata dall'editore)
Licenza: Creative commons
Dimensione 4.83 MB
Formato Adobe PDF
4.83 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11768/139484
Citazioni
  • ???jsp.display-item.citation.pmc??? 78
  • Scopus 155
  • ???jsp.display-item.citation.isi??? 145
social impact