: In multiple sclerosis (MS), a non-random and clinically relevant pattern of gray matter (GM) volume loss has been described. Whether differences in regional gene expression might underlay distinctive pathological processes contributing to this regional variability has not been explored yet. Two hundred eighty-six MS patients and 172 healthy controls (HC) underwent a brain 3T MRI, a complete neurological evaluation and a neuropsychological assessment. Using Allen Human Brain Atlas, voxel-based morphometry and MENGA platform, we integrated brain transcriptome and neuroimaging data to explore the spatial cross-correlations between regional GM volume loss and expressions of 2710 genes involved in MS (p < 0.05, family-wise error-corrected). Enrichment analyses were performed to evaluate overrepresented molecular functions, biological processes and cellular components involving genes significantly associated with voxel-based morphometry-derived GM maps (p < 0.05, Bonferroni-corrected). A diffuse GM volume loss was found in MS patients compared to HC and it was spatially correlated with 74 genes involved in GABA neurotransmission and mitochondrial oxidoreductase activity mainly expressed in neurons and astrocytes. A more severe GM volume loss was spatially associated, in more disabled MS patients, with 44 genes involved in mitochondrial integrity of all resident cells of the central nervous system (CNS) and, in cognitively impaired MS patients, with 64 genes involved in mitochondrial protein heterodimerization and oxidoreductase activities expressed also in microglia and endothelial cells. Specific differences in the expressions of genes involved in synaptic GABA receptor activities and mitochondrial functions in resident CNS cells may influence regional susceptibility to MS-related excitatory/inhibitory imbalance and oxidative stress, and subsequently, to GM volume loss.

Spatial correspondence among regional gene expressions and gray matter volume loss in multiple sclerosis / Preziosa, Paolo; Storelli, Loredana; Tedone, Nicolò; Margoni, Monica; Mistri, Damiano; Azzimonti, Matteo; Filippi, Massimo; Rocca, Maria A.. - In: MOLECULAR PSYCHIATRY. - ISSN 1359-4184. - 29:6(2024), pp. 1833-1843. [10.1038/s41380-024-02452-5]

Spatial correspondence among regional gene expressions and gray matter volume loss in multiple sclerosis

Preziosa, Paolo
Primo
;
Storelli, Loredana
Secondo
;
Tedone, Nicolò;Mistri, Damiano;Azzimonti, Matteo;Filippi, Massimo
Penultimo
;
Rocca, Maria A.
Ultimo
2024-01-01

Abstract

: In multiple sclerosis (MS), a non-random and clinically relevant pattern of gray matter (GM) volume loss has been described. Whether differences in regional gene expression might underlay distinctive pathological processes contributing to this regional variability has not been explored yet. Two hundred eighty-six MS patients and 172 healthy controls (HC) underwent a brain 3T MRI, a complete neurological evaluation and a neuropsychological assessment. Using Allen Human Brain Atlas, voxel-based morphometry and MENGA platform, we integrated brain transcriptome and neuroimaging data to explore the spatial cross-correlations between regional GM volume loss and expressions of 2710 genes involved in MS (p < 0.05, family-wise error-corrected). Enrichment analyses were performed to evaluate overrepresented molecular functions, biological processes and cellular components involving genes significantly associated with voxel-based morphometry-derived GM maps (p < 0.05, Bonferroni-corrected). A diffuse GM volume loss was found in MS patients compared to HC and it was spatially correlated with 74 genes involved in GABA neurotransmission and mitochondrial oxidoreductase activity mainly expressed in neurons and astrocytes. A more severe GM volume loss was spatially associated, in more disabled MS patients, with 44 genes involved in mitochondrial integrity of all resident cells of the central nervous system (CNS) and, in cognitively impaired MS patients, with 64 genes involved in mitochondrial protein heterodimerization and oxidoreductase activities expressed also in microglia and endothelial cells. Specific differences in the expressions of genes involved in synaptic GABA receptor activities and mitochondrial functions in resident CNS cells may influence regional susceptibility to MS-related excitatory/inhibitory imbalance and oxidative stress, and subsequently, to GM volume loss.
File in questo prodotto:
File Dimensione Formato  
Mol Pshychiatr 29_1833.pdf

solo gestori archivio

Tipologia: PDF editoriale (versione pubblicata dall'editore)
Licenza: Copyright dell'editore
Dimensione 2.91 MB
Formato Adobe PDF
2.91 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11768/156602
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact