Endocrine therapy (ET) is the cornerstone of management in hormone receptor (HR)+ breast cancer (BC). Indeed, targeting the estrogen receptor (ER) signaling at different levels is a successful strategy, since BC largely relies on the ER signaling as a driver of tumorigenesis and progression. In metastatic BC, progression of disease typically occurs due to either ligand-independent ER signaling, which favors tumor proliferation and survival in the absence of hormonal stimuli, or an ER-independent signaling, which exploits alternative transcription pathways. For instance, estrogen receptor 1 (ESR1) mutations induce constitutive ER activity, in turn upregulating ER-dependent gene transcription and causing resistance to estrogen depleting therapies. The largest unmet need lies after progression on ET + cyclin-dependent kinases 4 and 6 (CDK4/6) inhibitors, where fulvestrant alone provides an average 2–3-month PFS. In this context, novel oral selective estrogen receptor degraders (SERDs) and other next-generation ETs are being investigated, both as single agents and in combination with targeted therapies. Elacestrant, the next generation ET in most advanced clinical development and the first to be FDA approved, demonstrated improved outcomes compared to standard ETs in ET pre-treated HR+/HER2- metastatic BC in the phase 3 EMERALD clinical trial. Additionally, other agents are showing promising results in both preclinical and early phase clinical settings. In this review, emerging data related to oral SERDs and other novel ETs in managing HR+/HER2- BC are presented. Major challenges and future perspectives related to the optimal sequence of therapeutic options and the molecular landscape of endocrine resistance are also provided.

Novel endocrine therapies: What is next in estrogen receptor positive, HER2 negative breast cancer? / Corti, C.; De Angelis, C.; Bianchini, G.; Malorni, L.; Giuliano, M.; Hamilton, E.; Jeselsohn, R.; Jhaveri, K.; Curigliano, G.; Criscitiello, C.. - In: CANCER TREATMENT REVIEWS. - ISSN 0305-7372. - 117:(2023). [10.1016/j.ctrv.2023.102569]

Novel endocrine therapies: What is next in estrogen receptor positive, HER2 negative breast cancer?

Bianchini G.;
2023-01-01

Abstract

Endocrine therapy (ET) is the cornerstone of management in hormone receptor (HR)+ breast cancer (BC). Indeed, targeting the estrogen receptor (ER) signaling at different levels is a successful strategy, since BC largely relies on the ER signaling as a driver of tumorigenesis and progression. In metastatic BC, progression of disease typically occurs due to either ligand-independent ER signaling, which favors tumor proliferation and survival in the absence of hormonal stimuli, or an ER-independent signaling, which exploits alternative transcription pathways. For instance, estrogen receptor 1 (ESR1) mutations induce constitutive ER activity, in turn upregulating ER-dependent gene transcription and causing resistance to estrogen depleting therapies. The largest unmet need lies after progression on ET + cyclin-dependent kinases 4 and 6 (CDK4/6) inhibitors, where fulvestrant alone provides an average 2–3-month PFS. In this context, novel oral selective estrogen receptor degraders (SERDs) and other next-generation ETs are being investigated, both as single agents and in combination with targeted therapies. Elacestrant, the next generation ET in most advanced clinical development and the first to be FDA approved, demonstrated improved outcomes compared to standard ETs in ET pre-treated HR+/HER2- metastatic BC in the phase 3 EMERALD clinical trial. Additionally, other agents are showing promising results in both preclinical and early phase clinical settings. In this review, emerging data related to oral SERDs and other novel ETs in managing HR+/HER2- BC are presented. Major challenges and future perspectives related to the optimal sequence of therapeutic options and the molecular landscape of endocrine resistance are also provided.
2023
Breast cancer
CERAN
Endocrine
PROTAC
SERCA
SERD
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11768/161376
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 28
social impact