Inflammatory bowel diseases (IBDs), comprising Crohn’s disease (CD) and ulcerative colitis (UC), are chronic immune-mediated inflammatory diseases of the gastrointestinal (GI) tract with still-elusive etiopathogeneses and an increasing prevalence worldwide. Despite the growing availability of more advanced therapies in the last two decades, there are still a number of unmet needs. For example, the achievement of mucosal healing has been widely demonstrated as a prognostic marker for better outcomes and a reduced risk of dysplasia and cancer; however, the accuracy of endoscopy is crucial for both this aim and the precise and reproducible evaluation of endoscopic activity and the detection of dysplasia. Artificial intelligence (AI) has drastically altered the field of GI studies and is being extensively applied to medical imaging. The utilization of deep learning and pattern recognition can help the operator optimize image classification and lesion segmentation, detect early mucosal abnormalities, and eventually reveal and uncover novel biomarkers with biologic and prognostic value. The role of AI in endoscopy—and potentially also in histology and imaging in the context of IBD—is still at its initial stages but shows promising characteristics that could lead to a better understanding of the complexity and heterogeneity of IBDs, with potential improvements in patient care and outcomes. The initial experience with AI in IBDs has shown its potential value in the differentiation of UC and CD when there is no ileal involvement, reducing the significant amount of time it takes to review videos of capsule endoscopy and improving the inter- and intra-observer variability in endoscopy reports and scoring. In addition, these initial experiences revealed the ability to predict the histologic score index and the presence of dysplasia. Thus, the purpose of this review was to summarize recent advances regarding the application of AI in IBD endoscopy as there is, indeed, increasing evidence suggesting that the integration of AI-based clinical tools will play a crucial role in paving the road to precision medicine in IBDs.

Artificial Intelligence in Inflammatory Bowel Disease Endoscopy / Testoni, S. G. G.; Albertini Petroni, G.; Annunziata, M. L.; Dell'Anna, G.; Puricelli, M.; Delogu, C.; Annese, V.. - In: DIAGNOSTICS. - ISSN 2075-4418. - 15:7(2025). [10.3390/diagnostics15070905]

Artificial Intelligence in Inflammatory Bowel Disease Endoscopy

Testoni S. G. G.
;
Dell'Anna G.;Annese V.
2025-01-01

Abstract

Inflammatory bowel diseases (IBDs), comprising Crohn’s disease (CD) and ulcerative colitis (UC), are chronic immune-mediated inflammatory diseases of the gastrointestinal (GI) tract with still-elusive etiopathogeneses and an increasing prevalence worldwide. Despite the growing availability of more advanced therapies in the last two decades, there are still a number of unmet needs. For example, the achievement of mucosal healing has been widely demonstrated as a prognostic marker for better outcomes and a reduced risk of dysplasia and cancer; however, the accuracy of endoscopy is crucial for both this aim and the precise and reproducible evaluation of endoscopic activity and the detection of dysplasia. Artificial intelligence (AI) has drastically altered the field of GI studies and is being extensively applied to medical imaging. The utilization of deep learning and pattern recognition can help the operator optimize image classification and lesion segmentation, detect early mucosal abnormalities, and eventually reveal and uncover novel biomarkers with biologic and prognostic value. The role of AI in endoscopy—and potentially also in histology and imaging in the context of IBD—is still at its initial stages but shows promising characteristics that could lead to a better understanding of the complexity and heterogeneity of IBDs, with potential improvements in patient care and outcomes. The initial experience with AI in IBDs has shown its potential value in the differentiation of UC and CD when there is no ileal involvement, reducing the significant amount of time it takes to review videos of capsule endoscopy and improving the inter- and intra-observer variability in endoscopy reports and scoring. In addition, these initial experiences revealed the ability to predict the histologic score index and the presence of dysplasia. Thus, the purpose of this review was to summarize recent advances regarding the application of AI in IBD endoscopy as there is, indeed, increasing evidence suggesting that the integration of AI-based clinical tools will play a crucial role in paving the road to precision medicine in IBDs.
2025
artificial intelligence
dysplasia detection
endoscopic activity
endoscopy
histological activity
inflammatory bowel disease
File in questo prodotto:
File Dimensione Formato  
diagnostics-15-00905-v2.pdf

solo gestori archivio

Tipologia: PDF editoriale (versione pubblicata dall'editore)
Licenza: Tutti i diritti riservati
Dimensione 390.07 kB
Formato Adobe PDF
390.07 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11768/183398
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact